Quick Reference: SOHCAHTOA

Important Points Regarding SOHCAHTOA:

- SOHCAHTOA is an acronym that you can use to remember what sine, cosine, and tangent are equal to in terms of opposite, adjacent, and hypotenuse (see their equations below)
- You can only use SOHCAHTOA with right triangles
-With SOHCAHTOA, you are always taking the sine, cosine, etc. of an acute angle (NEVER the right angle)
- The legs of a right triangle are the sides that form the right angle (labeled \boldsymbol{a} and \boldsymbol{b} below)
-The hypotenuse (not a leg) is the side that's across from the right angle (labeled chelow)
- The opposite side is the leg that's across from the angle theta ($\boldsymbol{\theta}$) (labeled \boldsymbol{b} below)
- The adjacent side is the leg that's next to the angle theta ($\boldsymbol{\theta}$) (labeled \boldsymbol{a} below)

$$
\begin{aligned}
& \sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{b}{c} \\
& \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{a}{c} \\
& \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}=\frac{b}{a} \\
& \csc (\theta)=\frac{1}{\sin (\theta)}=\frac{h y p o t e n u s e}{\text { opposite }}=\frac{c}{b} \\
& \sec (\theta)=\frac{1}{\cos (\theta)}=\frac{h y p o t e n u s e}{a d j a c e n t}=\frac{c}{a} \\
& \cot (\theta)=\frac{1}{\tan (\theta)}=\frac{\operatorname{adjacent}}{\text { opposite }}=\frac{c}{a}
\end{aligned}
$$

